Market- Based Regulation of Agricultural Nonpoint Source Externalities

Catherine L. Kling Iowa State University Ames, Illinois

Providing Environmental Services from Agriculture in a Budget-Constrained Environment ERS, Farm Foundation, RFF April 18, 2012

Topics

- Intro to water quality issues from row crop agriculture (pictures)
- How to get more for less?
 - Be more willing to use models and proxies
 EBI without apology
 - 2. Reverse Property Rights

 Florida South Coast Agricultural Management District
 - 3. Do income support separately

Water Quality: Rivers & Streams

Photos courtesy Iowa DNR

- Rivers and Streams:
 - 26% assessed, 50% inadequate water quality to support designated uses
 - Nearly ½ million stream miles are "impaired"
 - Agriculture leading source of impairment (identified as cause of 22% unknown second highest)

Frequency and Size: 1985-Present

Hypoxia = Dead Zone

- Depleted oxygen creates zones incapable of supporting most life
- 400 worldwide
- Stressed marine and estuarine systems, mass mortality and dramatic changes in the structure of marine communities (Diaz and Rosenberg, 1995).
- In short....

Intelligent life is threatened

Nutrient deliveries to the Gulf of Mexico Source: USGS

- 52% of N from corn and soybean
- 40-50% reduction goal to address Gulf hypoxia

What abatement options exist?

- In field Management Practices
 - Reduced (no) tillage
 - Manure, fertilizer management/reduction
 - Cover crops, rotation changes

Land retirement

Panoramic view of gamma grass-big blue stem planting http://www.fsa.usda.gov/Internet/FSA_Image/ia_767_15.jpg

What abatement options exist?

- Structural Practices
 - Buffers
 - Grassed Waterways
 - Denitrification, controlled drainage
 - Wetland restoration

Photo courtesy Missouri NRCS

Sizing the drain pipe

(slides from Chris Hay, Extension Water Management Engineer, ABE, South Dakota State University

Photo: ARS

Photos: Matt Helmers

Nonpoint source or point source?

Lowell Busman and Gary Sands

About 25% of Cropland is Drained

Current policy, agricultural NPS water quality

- Voluntary, payment programs
- TMDLs, no enforceable standards
- Environmental quality goals, not met
- Iowa: ~30 million acres ag land
 - \$25/acre cover crops? = \$750 million/yr?
 - Are conservation budgets large enough?

EWG: ~800 million/yr corn, soybean subsidies 2010, +\$250 million/yr CRP

An Alternative

Reverse property rights

- Focus on practices (abatement actions)
 - Imperfect, but may still be welfare enhancing
 - Example: Abatement Action Permit System

An Abatement Action Permit System (AAPS) Based on Points

- Assign each practice/land use a point
- Set total points for watershed and allocate
- Allow trading
- Choose enforcement mechanism
- Adopt adaptive management
- Include innovation options

Features

 Addresses fairness – early adopters rewarded

 Could base on readily observable practices, could use in just most problematic areas

But seriously.....

But!

- Can't regulate when can't exactly measure each polluters contribution
 - We can pay them to set aside land and install practices even though we can't do so
 - We can tax estimates of the value of a house
- 2. Can't require practices when we're not sure what the ultimate environmental damage is:
 - Unless it's SO₂
 - Unless it's point source of water quality

But!

- 3. Transactions costs high, too many sources:
 - ~600,000 restaurants, calorie/health mandates
 - County extension offices, infrastructure!
 - We can pay them CRP, EQIP, WRP, conservation compliance ... but not regulate?
- 4. Property rights are set in stone:
 - littering
 - smoking
- 5. If it were possible, it would have been done

BMPs: Everglades Agricultural Area

718,000 acres (40 acre fields)

- Everglades Regulatory Program
 - goal 25% P reduction overall
 - mandatory BMPs, 1995
 - Implemented via points
 - flexibility in BMPs, 25 points/farm
 - expert judgment set point values
 - must implement and monitor WQ

Wikipedia

EAA Regulatory Program

Property Rights: with citizens

- First 3 years: 55% P load reduction (SFWMD, 1998)
- Unable to find information on costs
 - Direct cost of BMPs
 - Lost profit
 - Cost of monitoring
 - Cost of program implementation

Now you can yell at me

Use Tools Better

- Reverse Auctions
 - often implemented with simple ranking
 - erosion/cost of practice
 - Rank from highest to lowest and enroll
- Issues
 - Watershed models can better capture
 - Simple rankings ignore scale, land retirement may have lower benefit/cost ratio than reduced tillage, but can't achieve high benefit levels

"Optimal" reverse auctions

- 1. Agency announces potential set of practices that it will consider funding in an auction,
- 2. Elicit bids, multiple encouraged
- 3. Develop frontier of tradeoffs
- 4. Engage stakeholders, evaluate tradeoffs, discuss budget.
- Choose the set of bids and conservation practices

Using a coupled simulation-optimization approach to design cost-effective reverse auctions for watershed nutrient reductions, "S. Rabotyagov, A. Valcu T. Campbell, P.W. Gassman, M. Jha, and C.L. Kling

Watershed: 13 Fields, 4 options: a, b, c, d

Ranking vs. Pareto Optimal

Ranking method	Cost, \$/yr	N gains (%)	P gains (%)	Pareto- dominated	cost savings and nutrient gains
USLE full enrollment	19.5 million	10.2	32.0	Yes/16	\$2.8 mil, 1.4%N, 0.4%P
USLE partial enrollment	9.7 million	8.3	25.1	Yes/5	\$1.4 mil, 0.2%N, 0.9%P
MUSLE full enrollment	15.6 million	9.8	31.5	No	
MUSLE partial enrollment	7.8 million	8.0	25.6	No	

Findings

- 1. Optimal auction outperformed USLE
- 2. MUSLE ranking was not dominated, BUT
- 3. Ranking by either method focusses on practices that have highest gain/cost ratio, followed blindly, cannot achieve high reductions

Thanks for your attention!